Pages 601-607

METABOLISM OF 25-HYDROXYVITAMIN D $_3$ IN KIDNEY HOMOGENATES OF CHICKS SUPPLEMENTED WITH VITAMIN D $_3$

YOSHIKO TAKASAKI, NOBORU HORIUCHI, and TATSUO SUDA*

Department of Biochemistry, Showa University Dental School, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142, Japan

Received October 4,1978

Summary: Kidney homogenates from chicks fed a vitamin D-deficient diet for 10 days and supplemented with 6.5 nmol of vitamin D₃ 48 hr prior to sacrifice metabolized in vitro [3 H]-25-hydroxyvitamin D₃ (25-OH-D₃) to 24,25-dihydroxyvitamin D₃ [2 4,25-(OH)₂-D₃] and 3 other metabolites (peaks A, C and E). When the homogenates were incubated with purified [3 H]-24,25-(OH)₂-D₃, 3 similar metabolites (peaks A', C' and E') were produced. On high pressure liquid chromatography, peaks A, C and E migrated to exactly the same respective positions as peaks A', C' and E'. Kidney homogenates from D-deficient chicks failed to produce these metabolites from [3 H]-25-OH-D₃ or [3 H]-24,25-(OH)₂-D₃. These results strongly suggest that the new metabolites reported here are synthesized via 24,25-(OH)₂-D₃ in the kidney of chicks supplemented with vitamin D₃.

INTRODUCTION

It is now well established that vitamin D_3 is first metabolized to 25-hydroxyvitamin D_3 (25-OH- D_3) in the liver, and subsequently in the kidney to 1α ,25-dihydroxyvitamin D_3 [1α ,25- $(OH)_2$ - D_3] or 24,25-dihydroxyvitamin D_3 [24, 25- $(OH)_2$ - D_3](1). 1α ,25- $(OH)_2$ - D_3 has been thought to be an active form, since this metabolite induces a remarkable change in the levels of plasma calcium and phosphate (1). The biological significance of 24,25- $(OH)_2$ - D_3 , however, has not been established. The physiological circumstances associated with the selective formation of these metabolites has been investigated extensively. More 1α ,25- $(OH)_2$ - D_3 was produced when animals were in need of calcium or phosphate, or during vitamin D depletion, and more 24,25- $(OH)_2$ - D_3 was produced in the opposite situation (2-6).

In the course of investigating renal 24-hydroxylase activity, we found that kidney homogenates from chicks supplemented with vitamin D_3 metabolize $\underline{\text{in vitro}}$ [3H]-25-OH-D₃ to 3 other metabolites besides 24,25-(OH)₂-D₃. The

^{*} To whom all correspondence should be addressed. Abbreviations used: 25-OH-D₃, 25-hydroxyvitamin D₃; 1α ,25-(OH)₂-D₃, 1α ,25-dihydroxyvitamin D₃; 24,25-(OH)₂-D₃, 24,25-dihydroxyvitamin D₃.

present report describes that these new metabolites are synthesized from 25-OH-D, via 24,25-(OH),-D, in the kidney of chicks supplemented with vitamin D.

MATERIALS AND METHODS

Animals: One-day-old White Leghorn cockerel chicks were maintained for 10 days on a vitamin D-deficient purified soy protein diet (7) containing 3% calcium and 0.45% phosphorus. Most of the animals were orally predosed with 6.5 nmol of vitamin D_3 48 hr prior to sacrifice. The kidneys were quickly removed, rinsed, minced with a garlic press, and homogenized in 4 volumes of 0.2 M sucrose containing 15 mM Tris-C1 (pH 7.4), 2 mM MgCl2, 0.4 mM NADP, and 5 mM sodium succinate.

Incubation: The homogenates (1.5 ml) were incubated in 20 ml-Erlenmeyer flasks with 10 pmol (0.1 μ Ci) of either [26,27- 3 H]-25-OH-D $_3$ (Radiochemical Centre, Amersham) or $[26,27-3H]-24,25-(OH)_2-D_3$. The iucubation was carried out at 37°C for 5-60 min under 100% oxygen. The reactions were terminated by the addition of 9 ml of methanol-chloroform (2:1 v/v). Extraction was performed as reported by Gray et al. (8).

Chromatography: Chromatography of the extracts was carried out on a 1 x 30 cm column of Sephadex LH-20 (10 g) using a solvent of 65% chloroform - 35% hexane according to Holick and DeLuca (9). High pressure liquid chromatography (HPLC) was performed on a Waters HPLC system (Model 440) equipped with a Zorbax-Sil column (2.1 mm x 25 cm, Du Pont). The solvent system was either 0.67% or 2% methanol in dichloromethane according to Ikekawa and Koizumi (13). Thirtyfour 0.25 ml fractions were collected at a flow rate of 0.5 ml/min. Determination of radioactivity was carried out with a Packard liquid scintillation counter (Model 3255) as previously reported (10).

Preparation of [26,27-3H]-24,25-(OH) 2-D3: Kidney homogenates of chicks predosed intravenously with 312.5 pmol of Ia-hydroxyvitamin D₃ 24 hr prior to sacrifice were incubated with [3H]-25-OH-D3 at 37°C for 20 min. [3H]-24,25-(OH) 2-D3 was purified on the Sephadex LH-20 and HPLC column described above. Crystalline vitamin D3 was purchased from Tokyo Chemical Industry, and 25-OH-D $_3$ from Phillips-Dupher Co., Amsterdam. Crystalline 1α ,25-(OH) $_2$ -D $_3$ and 24R,25-(OH) $_2$ -D $_3$ were gifts from Dr. M. R. Uskoković, Hoffman-La Roche Inc., New Jersey. 1α -hydroxyvitamin D_3 was a gift from Dr. I. Matsunaga, Chugai Pharmaceutical Co., Tokyo.

RESULTS AND DISCUSSION

Administration of 6.5 nmol of vitamin D_3 to D-deficient chicks completely suppressed renal 25-OH-D $_3$ -l α -hydroxylase and enhanced 24-hydroxylase activity (Table I). In the course of investigating renal 24-hydroxylase activity, we found that the 25-OH-D $_3$ and the 24,25-(OH) $_2$ -D $_3$ fractions isolated from Sephadex LH-20 columns were both heterogeneous when purified by HPLC. The heterogeneity of the 24,25-(OH) $_{2}$ -D $_{3}$ fraction on Sephadex LH-20 column has been reported by Garabedian et al. (11) and Gray et al. (12). When the 25-OH-D, and the 24,25-(OH)2-D, fractions from Sephadex LH-20 columns (Fig 1. (a)) were individually applied to HPLC column, the former was separated into

Failure of synthesis of the new metabolites by kidney homogenates from D-deficient chicks. Table I.

nmo1	TICODACIONA	Peak A	25-0H-D ₃	Peak C	24,25-(OH) ₂ -D ₃	Peak E	lα, 25-(OH) 2-D ₃	Others
	Substrate	оқо	æ	æ	вP	oko .	æ	æ
	Control							
	25-OH-D ₂	0	17.6	0	0	0	73.6	8,8
c	٦	0	24.8	0	0	0	63.2	12.0
>	24,25-(OH),-D	Trace	0	0	87.2	Trace	0	5.4
	2 - 3	Trace	0	0	9.68	Trace	0	3.2
	Control							
	25-OH-D ₂	15.8	39.6	23.3	9.5	5.1	0	6.7
	3	15.9	22.2	25.8	23.1	8.0	0	5.0
	24.25-(OH)D-	15.4	0	45.2	25.9	8.4	0	5.1
	£ 7	13.9	0	47.6	27.3	8.8	0	2.4
6.5	Boiled**						•	
	24,25-(OH),-D	0	0	0	7.76	0	0	2.3
	5 7	0	0	0	98.5	0	0	1.5
	100% N ₂ ***							
	24,25-(OH),-D,	0	0	0	92.0	0	0	8.0
	2	0	0	0	91.7	0	0	8.3

fractions from Sephadex LH-20 columns were separately applied to HPLC columns. The 25-OH-D₃ and the 24,25-(OH)₂-D₃ fractions from Sephadex LH-20 columns were separately applied to HPLC column Figures in Table I are expressed as percentage of the sum of the radioactivity recovered in each 1-34 fractions

^{*} All incubations were performed for 60 min.

^{**} boiled homogenates for 5 min at 100°C prior to incubation. *** incubated for 60 min under 100% $\rm N_2$

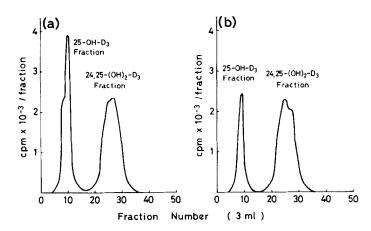


Fig 1. Sephadex LH-20 chromatographic profiles of extracts of kidney homogenates from chicks orally dosed with 6.5 nmol of vitamin D₃. The reaction conditions are described under MATERIALS AND METHODS. The columns containing 10 g of Sephadex LH-20 were eluted with chloroform : n-hexane (65:35, v/v) and 3 ml fractions were collected. Panel (a) represents a chromatographic profile of the extracts when the homogenates were incubated for 60 min with 10 pmol (0.1 μ Ci) of [³H]-25-OH-D₃ and panel (b) with 10 pmol (0.1 μ Ci) of [³H]-24,25-(OH)₂-D₃.

2 peaks: an unknown peak referred to as peak A, and peak B which coincided with authentic 25-OH-D $_3$ (Fig 2. (a)). On HPLC the latter was separated into 3 peaks: 2 unidentified peaks C and E, and peak D which coincided with authentic 24R,25-(OH) $_2$ -D $_3$ (Fig 2. (b)). Some of these new metabolites resemble chromatographically those recently reported by Gray et al. (12). However, they demonstrated that prior administration of 1α ,25-(OH) $_2$ -D $_3$ produced similar metabolites from [3 H]-25-OH-D $_3$ to those reported here, whereas administration of vitamin D $_3$ or 25-OH-D $_3$ failed to produce them (12). Thus, new metabolites in this study might be different from those by Gray et al. (12).

When the homogenates were incubated with purified $[^3H]-24,25-(OH)_2-D_3$, a radioactive peak appeared in the 25-OH-D₃ fraction on Sephadex LH-20 columns (Fig 1. (b)). HPLC showed that the radioactive peak was homogeneous, which was referred to as peak A'. The homogenates did not produce 25-OH-D₃ from $[^3H]-24,25-(OH)_2-D_3$ (Fig 2. (c)). Peak A' migrated to exactly the same position as peak A on HPLC. The 24,25-(OH)₂-D₃ fraction was also separated into 3 peaks: 2 unidentified peaks C' and E', and peak D' which coincided with

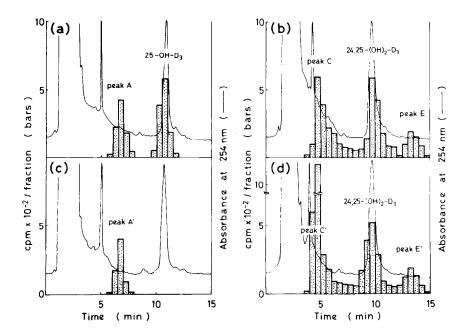


Fig 2. HPLC profiles of the $25-OH-D_3$ and the $24,25-(OH)_2-D_3$ fractions collected from the Sephadex LH-20 columns. Panels (a) and (c) represent HPLC profiles of the $25-OH-D_3$ fraction (tubes 6-13) shown on Fig 1. (a) and (b), respectively. Panels (b) and (d) indicate those of the $24,25-(OH)_2-D_3$ fraction (tubes 16-35) on Fig 1. (a) and (b), respectively. Before applying to HPLC columns, 500 pmol of authentic $25-OH-D_3$ (in panels (a) and (c)) or 24R, $25-(OH)_2-D_3$ (in panels (b) and (d)) were added to each extract. The columns were eluted with a solvent of either 0.67% methanol (in panels (a) and (c)) or 2% methanol (in panels (b) and (d)) in dichloromethane.

authentic 24R,25-(OH)₂-D₃ (Fig 2. (d)). On HPLC peaks C' and E' migrated to exactly the same respective positions as peaks C and E. When the homogenates were preheated at 100°C for 5 min, neither peaks A, C and E nor peaks A', C' and E' were produced, indicating that these metabolites are synthesized enzymatically. Production of these metabolites was also suppressed completely under 100% nitrogen (Table I).

Figure 3 indicates time course of change in the amounts of $24,25-(OH)_2-D_3$ and peaks A, C and E when the homogenates were incubated with $[^3H]-25-OH-D_3$ for 5-60 min. Amounts of $24,25-(OH)_2-D_3$ produced attained a maximal level in 5-10 min and decreased thereafter. On the other hand, amounts of peaks A, C and E gradually increased during the incubation period of 60 min. When the

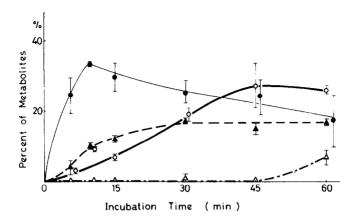


Fig 3. Time course of change in the amounts of the 25-OH-D₃ metabolites produced by kidney homogenates from chicks dosed with 6.5 nmol of vitamin D₃. Incubations were carried out with 10 pmol (0.1 μ Ci) of [3H]-25-OH-D₃ as described under MATERIALS AND METHODS. Results are expressed as percentage of the radioactivity recovered as peak A (——A——), peak C (———), 24,25-(OH)₂-D₃ (———), and peak E (———A——). The vertical bar indicates standard error of the mean of 3-4 experiments.

homogenates were incubated with $[^3H]-25-OH-D_3$ or $[^3H]-24,25-(OH)_2-D_3$, the major metabolite was peak C (or C'), and peaks A (or A') and E (or E') were relatively minor ones (Table I). Kidney homogenates from D-deficient chicks failed to produce these metabolites from 25-OH-D₃ or 24,25-(OH)₂-D₃ (Table I).

The results reported here indicate that the metabolites of 25-OH-D_3 (peaks A, C and E) are synthesized via $24,25\text{-}(OH)_2\text{-D}_3$ in the kidney of chicks supplemented with vitamin D_3 . First, peaks A', C' and E' with chromatographic behaviors similar to peaks A, C and E, respectively, are produced from purified $[^3H]-24,25\text{-}(OH)_2\text{-D}_3$. Second, on HPLC peaks A, C and E migrate to exactly the same respective positions as peaks A', C' and E'. Third, the homogenates do not produce 25-OH-D_3 from $24,25\text{-}(OH)_2\text{-D}_3$. Fourth, kidney homogenates from D-deficient chicks fail to produce these metabolites from 25-OH-D_3 . Finally, the time course of change in the amounts produced of $24,25\text{-}(OH)_2\text{-D}_3$ and peaks A, C and E fits with the above hypothesis.

Biological significance of these metabolites is of considerable interest in view of the control mechanism of $25-OH-D_3$ metabolism, which is currently under investigation in our laboratory.

REFERENCES

- 1. DeLuca, H. F., and Schnoes, H. K. (1976) Ann. Rev. Biochem. 45, 631-666.
- Boyle, I. T., Gray, R. W., and DeLuca, H. F. (1971) Proc. Nat. Acad. Sci. USA 68, 2131-2134.
- Tanaka, Y., and DeLuca, H. F. (1973) Arch. Biochem. Biophys. <u>154</u>, 566-574
- Horiuchi, N., Suda, T., Sasaki, S., Ezawa, I., Sano. Y., and Ogata, E. (1974) FEBS Letters 43, 353-356.
- 5. Tanaka, Y., and DeLuca, H. F. (1974) Science 183, 1198-1200.
- Hughes, M. R., Brumbaugh, P. F., Haussler, M. R., Wergedal, J. E., and Baylink, D. J. (1975) Science 190, 578-580.
- Omdahl, J., Holick, M. F., Suda, T., Tanaka, Y., and DeLuca, H. F. (1971) Biochemistry <u>10</u>, 2935-2940.
- Gray, R. W., Omdahl, J. L., Ghazarian, J. G., and DeLuca, H. F. (1972)
 J. Biol. Chem. 247, 7528-7532.
- 9. Holick, M. F., and DeLuca, H. F. (1971) J. Lipid Res. 12, 460-465.
- Horiuchi, N., Suda, T., Sasaki, S., Ogata, E., Ezawa, I., Sano, Y., and Shimazawa, E. (1975) Arch. Biochem. Biophys. 171, 540-548.
- 11. Garabedian, M., Bailly Du Bois, M., Corvol, M. T., Pezant, E., and Balsan, S. (1978) Endocrinology 102, 1262-1268.
- 12. Gray, R. W., Caldas, A. E., Weber, J. L., and Ghazarian, J. G. (1978) Biochem. Biophys, Res. Commun. 82, 121-128.
- 13. Ikekawa, N., and Koizumi, N. (1976) J. Chrmatogr. 119, 227-232.